کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
405570 | 677676 | 2011 | 16 صفحه PDF | دانلود رایگان |

We recently employed concepts of mathematical morphology to introduce fuzzy morphological associative memories (FMAMs), a broad class of fuzzy associative memories (FAMs). We observed that many well-known FAM models can be classified as belonging to the class of FMAMs. Moreover, we developed a general learning strategy for FMAMs using the concept of adjunction of mathematical morphology.In this paper, we describe the properties of FMAMs with adjunction-based learning. In particular, we characterize the recall phase of these models. Furthermore, we prove several theorems concerning the storage capacity, noise tolerance, fixed points, and convergence of auto-associative FMAMs. These theorems are corroborated by experimental results concerning the reconstruction of noisy images. Finally, we successfully employ FMAMs with adjunction-based learning in order to implement fuzzy rule-based systems in an application to a time-series prediction problem in industry.
Journal: Neural Networks - Volume 24, Issue 1, January 2011, Pages 75–90