کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
405648 677706 2007 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An augmented CRTRL for complex-valued recurrent neural networks
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
An augmented CRTRL for complex-valued recurrent neural networks
چکیده انگلیسی

Real world processes with an “intensity” and “direction” component can be made complex by convenience of representation (vector fields, radar, sonar), and their processing directly in the field of complex numbers CC is not only natural but is also becoming commonplace in modern applications. Yet, adaptive signal processing and machine learning algorithms suitable for the processing of such signals directly in CC are only emerging. To this cause we introduce a second order statistical learning framework for a general class of nonlinear adaptive filters with feedback realized as recurrent neural networks (RNNs). For rigour, both the so-called proper- and improper-second order statistics of complex processes is taken into account, and the proposed augmented complex real-time recurrent learning (ACRTRL) algorithm for RNNs has been shown to be suitable for processing a wide range of both benchmark and real-world complex processes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 20, Issue 10, December 2007, Pages 1061–1066
نویسندگان
, ,