کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
405677 678015 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Locality Constrained-ℓp Sparse Subspace Clustering for Image Clustering
ترجمه فارسی عنوان
خوشه بندی صفحات پراکنده ℓp محدود محلی برای خوشه بندی تصویر
کلمات کلیدی
خوشه بندی صفحات. برنامه نویسی پراکنده؛ به حداقل رساندن نرم ℓ1 ؛ به حداقل رساندن نرم ℓp
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In most sparse coding based image restoration and image classification problems, using the non-convex ℓp-norm minimization (0≤p<1) can often deliver better results than using the convex ℓ1-norm minimization. Also, the high computational costs of ℓ1-graph in Sparse Subspace Clustering prevent ℓ1-graph from being used in large scale high-dimensional datasets. To address these problems, we in this paper propose an algorithm called Locality Constrained-ℓp Sparse Subspace Clustering (kNN-ℓp). The sparse graph constructed by locality constrained ℓp-norm minimization can remove most of the semantically unrelated links among data at lower computational cost. As a result, the discriminative performance is improved compared with the ℓ1-graph. We also apply the k nearest neighbors to accelerate the sparse graph construction without losing its effectiveness. To demonstrate the improved performance of the proposed Locality Constrained-ℓp Sparse Subspace Clustering algorithm, comparative study was performed on benchmark problems of image clustering. Thoroughly experimental studies on real world datasets show that the Locality Constrained-ℓp Sparse Subspace Clustering algorithm can significantly outperform other state-of-the-art methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 205, 12 September 2016, Pages 22–31
نویسندگان
, , ,