کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
406185 | 678068 | 2014 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On extending the complex FastICA algorithms to noisy data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Independent component analysis (ICA) methods are widely applied to modern digital signal processing. The complex-valued FastICA algorithms are one type of the most significant methods. However, the complex ICA model usually omits the noise. In this paper, we discuss two complex FastICA algorithms for noisy data, where the cost functions are based on kurtosis and negentropy respectively. The nc-FastICA and KM-F algorithms are modified to separate noisy data. At the same time, we also give the stability conditions of cost functions. Simulations are presented to illustrate the effectiveness of our methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 60, December 2014, Pages 194–202
Journal: Neural Networks - Volume 60, December 2014, Pages 194–202
نویسندگان
Zongli Ruan, Liping Li, Guobing Qian,