کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406346 678078 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalization performance of Gaussian kernels SVMC based on Markov sampling
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Generalization performance of Gaussian kernels SVMC based on Markov sampling
چکیده انگلیسی

In this paper we consider Gaussian RBF kernels support vector machine classification (SVMC) algorithm with uniformly ergodic Markov chain (u.e.M.c.) samples in reproducing kernel Hilbert spaces (RKHS). We analyze the learning rates of Gaussian RBF kernels SVMC based on u.e.M.c. samples and obtain the fast learning rate of Gaussian RBF kernels SVMC based on u.e.M.c. samples by using the strongly mixing property of u.e.M.c. samples. We also present the numerical studies on the learning performance of Gaussian RBF kernels SVMC based on Markov sampling for real-world datasets. These experimental results show that Gaussian RBF kernels SVMC based on Markov sampling has better learning performance compared to randomly independent sampling.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 53, May 2014, Pages 40–51
نویسندگان
, , , , , ,