کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406409 678083 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
1-norm support vector novelty detection and its sparseness
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
1-norm support vector novelty detection and its sparseness
چکیده انگلیسی

This paper proposes a 1-norm support vector novelty detection (SVND) method and discusses its sparseness. 1-norm SVND is formulated as a linear programming problem and uses two techniques for inducing sparseness, or the 1-norm regularization and the hinge loss function. We also find two upper bounds on the sparseness of 1-norm SVND, or exact support vector (ESV) and kernel Gram matrix rank bounds. The ESV bound indicates that 1-norm SVND has a sparser representation model than SVND. The kernel Gram matrix rank bound can loosely estimate the sparseness of 1-norm SVND. Experimental results show that 1-norm SVND is feasible and effective.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 48, December 2013, Pages 125–132
نویسندگان
, ,