کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406494 678088 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonlinear spectro-temporal features based on a cochlear model for automatic speech recognition in a noisy situation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Nonlinear spectro-temporal features based on a cochlear model for automatic speech recognition in a noisy situation
چکیده انگلیسی

A nonlinear speech feature extraction algorithm was developed by modeling human cochlear functions, and demonstrated as a noise-robust front-end for speech recognition systems. The algorithm was based on a model of the Organ of Corti in the human cochlea with such features as such as basilar membrane (BM), outer hair cells (OHCs), and inner hair cells (IHCs). Frequency-dependent nonlinear compression and amplification of OHCs were modeled by lateral inhibition to enhance spectral contrasts. In particular, the compression coefficients had frequency dependency based on the psychoacoustic evidence. Spectral subtraction and temporal adaptation were applied in the time-frame domain. With long-term and short-term adaptation characteristics, these factors remove stationary or slowly varying components and amplify the temporal changes such as onset or offset. The proposed features were evaluated with a noisy speech database and showed better performance than the baseline methods such as mel-frequency cepstral coefficients (MFCCs) and RASTA-PLP in unknown noisy conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 45, September 2013, Pages 62–69
نویسندگان
, ,