کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406601 678098 2012 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic analysis of value prediction by well-specified and misspecified models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Asymptotic analysis of value prediction by well-specified and misspecified models
چکیده انگلیسی

One of the important theoretical issues in reinforcement learning is to rigorously know the statistical properties of various value estimators. This study aims to theoretically examine the prediction error of the value estimator whose estimated value is represented by a linear function with respect to a parameter. We extend the framework of semiparametric statistics inference introduced by to make it applicable to analysis of mean squared error (MSE) between the true value and the predicted value. This analysis allows us to investigate and compare the statistical prediction error of value estimators when the model is misspecified, i.e., the value estimator cannot represent the true value irrelevant to the parameter. We confirm our theoretical analysis by using a toy problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 31, July 2012, Pages 88–92
نویسندگان
, , ,