کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
411339 679547 2013 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Observability-based local path planning and obstacle avoidance using bearing-only measurements
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Observability-based local path planning and obstacle avoidance using bearing-only measurements
چکیده انگلیسی


• We analyze observability of state estimation with bearing-only measurements.
• We use the observability analysis to explicitly design a path planning algorithm.
• The algorithm minimizes uncertainties of TTC estimate while avoiding obstacles.

In this paper we present an observability-based local path planning and obstacle avoidance technique that utilizes an extended Kalman Filter (EKF) to estimate the time-to-collision (TTC) and bearing to obstacles using bearing-only measurements. To ensure that the error covariance matrix computed by an EKF is bounded, the system should be observable. We perform a nonlinear observability analysis to obtain the necessary conditions for complete observability of the system. These conditions are used to explicitly design a path planning algorithm that enhances observability while simultaneously avoiding collisions with obstacles. We analyze the behavior of the path planning algorithm and specially define the environments where the path planning algorithm will guarantee collision-free paths that lead to a goal configuration. Numerical results show the effectiveness of the planning algorithm in solving single and multiple obstacle avoidance problems while improving the estimation accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Robotics and Autonomous Systems - Volume 61, Issue 12, December 2013, Pages 1392–1405
نویسندگان
, , , ,