کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
411584 679574 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Extending BDI plan selection to incorporate learning from experience
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Extending BDI plan selection to incorporate learning from experience
چکیده انگلیسی

An important drawback to the popular Belief, Desire, and Intentions (BDI) paradigm is that such systems include no element of learning from experience. We describe a novel BDI execution framework that models context conditions as decision trees, rather than boolean formulae, allowing agents to learn the probability of success for plans based on experience. By using a probabilistic plan selection function, the agents can balance exploration and exploitation of their plans. We extend earlier work to include both parameterised goals and recursion and modify our previous approach to decision tree confidence to include large and even non-finite domains that arise from such consideration. Our evaluation on a pre-existing program that relies heavily on recursion and parametrised goals confirms previous results that naive learning fails in some circumstances, and demonstrates that the improved approach learns relatively well.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Robotics and Autonomous Systems - Volume 58, Issue 9, 30 September 2010, Pages 1067–1075
نویسندگان
, , ,