کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
411706 | 679588 | 2009 | 7 صفحه PDF | دانلود رایگان |

In this paper, a dual neural network, LVI (linear variational inequalities)-based primal-dual neural network and simplified LVI-based primal-dual neural network are presented for online repetitive motion planning (RMP) of redundant robot manipulators (with a four-link planar manipulator as an example). To do this, a drift-free criterion is exploited in the form of a quadratic performance index. In addition, the repetitive-motion-planning scheme could incorporate the joint physical limits such as joint limits and joint velocity limits simultaneously. Such a scheme is finally reformulated as a quadratic program (QP). As QP real-time solvers, the aforementioned three kinds of neural networks all have piecewise-linear dynamics and could globally exponentially converge to the optimal solution of strictly-convex quadratic-programs. Furthermore, the neural-network based RMP scheme is simulated based on a four-link planar robot manipulator. Computer-simulation results substantiate the theoretical analysis and also show the effective remedy of the joint angle drift problem of robot manipulators.
Journal: Robotics and Autonomous Systems - Volume 57, Issues 6–7, 30 June 2009, Pages 645–651