کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412335 679627 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quasi optimal sagittal gait of a biped robot with a new structure of knee joint
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Quasi optimal sagittal gait of a biped robot with a new structure of knee joint
چکیده انگلیسی


• We model a new kinematic of rolling knee for a biped robot.
• We generate walking trajectories and optimize them to reduce the energy gait.
• We compare these results to a robot with revolute knee.
• The results show an energy reduction due to the rolling knee.

The design of humanoid robots has been a tricky challenge for several years. Due to the kinematic complexity of human joints, their movements are notoriously difficult to be reproduced by a mechanism. The human knees allow movements including rolling and sliding, and therefore the design of new bio-inspired knees is of utmost importance for the reproduction of anthropomorphic walking in the sagittal plane. In this article, the kinematic characteristics of knees were analyzed and a mechanical solution for reproducing them is proposed. The geometrical, kinematic and dynamic models are built together with an impact model for a biped robot with the new knee kinematic. The walking gait is studied as a problem of parametric optimization under constraints. The trajectories of walking are approximated by mathematical functions for a gait composed of single support phases with impacts. Energy criteria allow comparing the robot provided with the new rolling knee mechanism and a robot equipped with revolute knee joints. The results of the optimizations show that the rolling knee brings a decrease of the sthenic criterion. The comparisons of torques are also observed to show the difference of energy distribution between the actuators. For the same actuator selection, these results prove that the robot with rolling knees can walk longer than the robot with revolute joint knees.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Robotics and Autonomous Systems - Volume 62, Issue 4, April 2014, Pages 436–445
نویسندگان
, , ,