کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
414181 680823 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
New bounds on the maximum number of edges in k-quasi-planar graphs
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
New bounds on the maximum number of edges in k-quasi-planar graphs
چکیده انگلیسی

A topological graph is k-quasi-planar if it does not contain k pairwise crossing edges. A 20-year-old conjecture asserts that for every fixed k, the maximum number of edges in a k-quasi-planar graph on n   vertices is O(n)O(n). Fox and Pach showed that every k-quasi-planar graph with n   vertices has at most n(log⁡n)O(log⁡k)n(log⁡n)O(log⁡k) edges. We improve this upper bound to 2α(n)cnlog⁡n2α(n)cnlog⁡n, where α(n)α(n) denotes the inverse Ackermann function and c depends only on k, for k-quasi-planar graphs in which any two edges intersect in a bounded number of points. We also show that every k-quasi-planar graph with n   vertices in which any two edges have at most one point in common has at most O(nlog⁡n)O(nlog⁡n) edges. This improves the previously known upper bound of 2α(n)cnlog⁡n2α(n)cnlog⁡n obtained by Fox, Pach, and Suk.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Geometry - Volume 50, December 2015, Pages 24–33
نویسندگان
, ,