کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
414221 | 680850 | 2014 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Minimum enclosing circle of a set of fixed points and a mobile point
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Given a set S of n static points and a mobile point p in R2R2, we study the variations of the smallest circle that encloses S∪{p}S∪{p} when p moves along a straight line ℓ . In this work, a complete characterization of the locus of the center of the minimum enclosing circle (MEC) of S∪{p}S∪{p}, for p∈ℓp∈ℓ, is presented. The locus is a continuous and piecewise differentiable linear function, and each of its differentiable pieces lies either on the edges of the farthest-point Voronoi diagram of S, or on a line segment parallel to the line ℓ . Moreover, the locus has O(n)O(n) differentiable pieces, which can be computed in linear time, given the farthest-point Voronoi diagram of S.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Geometry - Volume 47, Issue 9, October 2014, Pages 891–898
Journal: Computational Geometry - Volume 47, Issue 9, October 2014, Pages 891–898
نویسندگان
Aritra Banik, Bhaswar B. Bhattacharya, Sandip Das,