کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
414234 | 680855 | 2014 | 13 صفحه PDF | دانلود رایگان |

We study several geometric set cover and set packing problems involving configurations of points and geometric objects in Euclidean space. We show that it is APX-hard to compute a minimum cover of a set of points in the plane by a family of axis-aligned fat rectangles, even when each rectangle is an ϵ-perturbed copy of a single unit square. We extend this result to several other classes of objects including almost-circular ellipses, axis-aligned slabs, downward shadows of line segments, downward shadows of graphs of cubic functions, fat semi-infinite wedges, 3-dimensional unit balls, and axis-aligned cubes, as well as some related hitting set problems. We also prove the APX-hardness of a related family of discrete set packing problems. Our hardness results are all proven by encoding a highly structured minimum vertex cover problem which we believe may be of independent interest.In contrast, we give a polynomial-time dynamic programming algorithm for geometric set cover where the objects are pseudodisks containing the origin or are downward shadows of pairwise 2-intersecting x-monotone curves. Our algorithm extends to the weighted case where a minimum-cost cover is required. We give similar algorithms for several related hitting set and discrete packing problems.
Journal: Computational Geometry - Volume 47, Issue 2, Part A, February 2014, Pages 112–124