کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
414298 680880 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Geometric spanners with small chromatic number
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Geometric spanners with small chromatic number
چکیده انگلیسی

Given an integer k⩾2, we consider the problem of computing the smallest real number t(k) such that for each set P of points in the plane, there exists a t(k)-spanner for P that has chromatic number at most k. We prove that t(2)=3, t(3)=2, , and give upper and lower bounds on t(k) for k>4. We also show that for any ϵ>0, there exists a (1+ϵ)t(k)-spanner for P that has O(|P|) edges and chromatic number at most k. Finally, we consider an on-line variant of the problem where the points of P are given one after another, and the color of a point must be assigned at the moment the point is given. In this setting, we prove that t(2)=3, , , and give upper and lower bounds on t(k) for k>4.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Geometry - Volume 42, Issue 2, February 2009, Pages 134-146