کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
414374 680913 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Operations preserving the global rigidity of graphs and frameworks in the plane
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Operations preserving the global rigidity of graphs and frameworks in the plane
چکیده انگلیسی

A straight-line realization of (or a bar-and-joint framework on) graph G in Rd is said to be globally rigid if it is congruent to every other realization of G with the same edge lengths. A graph G is called globally rigid in Rd if every generic realization of G is globally rigid. We give an algorithm for constructing a globally rigid realization of globally rigid graphs in R2. If G is triangle-reducible, which is a subfamily of globally rigid graphs that includes Cauchy graphs as well as Grünbaum graphs, the constructed realization will also be infinitesimally rigid.Our algorithm relies on the inductive construction of globally rigid graphs which uses edge additions and one of the Henneberg operations. We also show that vertex splitting, which is another well-known operation in combinatorial rigidity, preserves global rigidity in R2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Geometry - Volume 42, Issues 6–7, August 2009, Pages 511-521