کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
414380 680913 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient algorithms for computing Reeb graphs
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Efficient algorithms for computing Reeb graphs
چکیده انگلیسی

The Reeb graph tracks topology changes in level sets of a scalar function and finds applications in scientific visualization and geometric modeling. We describe an algorithm that constructs the Reeb graph of a Morse function defined on a 3-manifold. Our algorithm maintains connected components of the two dimensional levels sets as a dynamic graph and constructs the Reeb graph in O(nlogn+nlogg3(loglogg)) time, where n is the number of triangles in the tetrahedral mesh representing the 3-manifold and g is the maximum genus over all level sets of the function. We extend this algorithm to construct Reeb graphs of d-manifolds in O(nlogn3(loglogn)) time, where n is the number of triangles in the simplicial complex that represents the d-manifold. Our result is a significant improvement over the previously known O(n2) algorithm. Finally, we present experimental results of our implementation and demonstrate that our algorithm for 3-manifolds performs efficiently in practice.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Geometry - Volume 42, Issues 6–7, August 2009, Pages 606-616