کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
414645 680993 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Steiner reducing sets of minimum weight triangulations: Structure and topology
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Steiner reducing sets of minimum weight triangulations: Structure and topology
چکیده انگلیسی

This paper defines and classifies the topology of the Steiner reducing set corresponding to a finite planar point set and its minimum weight triangulation. A Steiner point P is a Steiner reducing point of a planar point set X   if the weight (sum of edge lengths) of a minimum weight triangulation of X∪{P}X∪{P} is less than that of X. The Steiner reducing set  St(X)St(X) is the collection of all Steiner reducing points of X  . We prove a structure theorem providing alternate geometric conditions for membership in the Steiner reducing set. We prove that St(X)St(X) can be topologically complex, containing multiple connected components or even holes. We construct families of sets X   for which the number of connected components of St(X)St(X) grows linearly in the cardinality of X  . Moreover, we prove that when St(X)St(X) is not simply connected, the rank of H1(St(X))H1(St(X)) (i.e. the number of holes) can also grow linearly in the cardinality of X. Lastly, we give an example illustrating that the geometric conditions do not translate simply into conditions sufficient to completely characterize the Steiner reducing set.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Geometry - Volume 49, November 2015, Pages 24–36
نویسندگان
,