کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
414733 | 681017 | 2006 | 8 صفحه PDF | دانلود رایگان |

The paper considers the neuro-fuzzy position control of multi-finger robot hand in tele-operation system—an active master–slave hand system (MSHS) for demining. Recently, fuzzy control systems utilizing artificial intelligent techniques are also being actively investigated in robotic area. Neural network with their powerful learning capability are being sought as the basis for many adaptive control systems where on-line adaptation can be implemented. Fuzzy logic on the other hand has been proved to be rather popular in many control system applications providing a rule-base like structure. In this paper, the design and optimization process of fuzzy position controller is supported by learning techniques derived from neural network where a radial basis function (RBF) neural network is implemented to learn fuzzy rules and membership functions with predictor of recurrent neural network (RNN) model. The results of experiment show that based on the predictive capability of RNN model neuro-fuzzy controller with good adaptation and robustness capability can be designed.
Journal: Robotics and Computer-Integrated Manufacturing - Volume 22, Issue 1, February 2006, Pages 25–32