کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
414840 | 681056 | 2011 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Almost all Delaunay triangulations have stretch factor greater than π/2
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Consider the Delaunay triangulation T of a set P of points in the plane as a Euclidean graph, in which the weight of every edge is its length. It has long been conjectured that the stretch factor in T of any pair p,p′∈P, which is the ratio of the length of the shortest path from p to p′ in T over the Euclidean distance ‖pp′‖, can be at most π/2≈1.5708. In this paper, we show how to construct point sets in convex position with stretch factor >1.5810 and in general position with stretch factor >1.5846. Furthermore, we show that a sufficiently large set of points drawn independently from any distribution will in the limit approach the worst-case stretch factor for that distribution.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Geometry - Volume 44, Issue 2, February 2011, Pages 121-127
Journal: Computational Geometry - Volume 44, Issue 2, February 2011, Pages 121-127