کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
414874 | 681069 | 2009 | 13 صفحه PDF | دانلود رایگان |

In this paper we discuss the complexity and approximability of the minimum corridor connection problem where, given a rectilinear decomposition of a rectilinear polygon into “rooms”, one has to find the minimum length tree along the edges of the decomposition such that every room is incident to a vertex of the tree. We show that the problem is strongly NP-hard and give a subexponential time exact algorithm. For the special case when the room connectivity graph is k-outerplanar the algorithm running time becomes cubic. We develop a polynomial time approximation scheme for the case when all rooms are fat and have nearly the same size. When rooms are fat but are of varying size we give a polynomial time constant factor approximation algorithm.
Journal: Computational Geometry - Volume 42, Issue 9, November 2009, Pages 939-951