کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
414879 | 681074 | 2009 | 10 صفحه PDF | دانلود رایگان |

We study wrappings of smooth (convex) surfaces by a flat piece of paper or foil. Such wrappings differ from standard mathematical origami because they require infinitely many infinitesimally small folds (“crumpling”) in order to transform the flat sheet into a surface of nonzero curvature. Our goal is to find shapes that wrap a given surface, have small area and small perimeter (for efficient material usage), and tile the plane (for efficient mass production). Our results focus on the case of wrapping a sphere. We characterize the smallest square that wraps the unit sphere, show that a 0.1% smaller equilateral triangle suffices, and find a 20% smaller shape contained in the equilateral triangle that still tiles the plane and has small perimeter.
Journal: Computational Geometry - Volume 42, Issue 8, October 2009, Pages 748-757