کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
414902 681088 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Configurations with few crossings in topological graphs
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Configurations with few crossings in topological graphs
چکیده انگلیسی

In this paper we study the problem of computing subgraphs of a certain configuration in a given topological graph G such that the number of crossings in the subgraph is minimum. The configurations that we consider are spanning trees, s–t paths, cycles, matchings, and κ-factors for κ∈{1,2}. We show that it is NP-hard to approximate the minimum number of crossings for these configurations within a factor of k1−ε for any ε>0, where k is the number of crossings in G.We then give a simple fixed-parameter algorithm that tests in O⋆(k2) time whether G has a crossing-free configuration for any of the above, where the O⋆-notation neglects polynomial terms. For some configurations we have faster algorithms. The respective running times are O⋆(k1.9999992) for spanning trees and for s-t paths and cycles. For spanning trees we also have an O⋆(k1.968)-time Monte-Carlo algorithm. Each O⋆(βk)-time decision algorithm can be turned into an O⋆(k(β+1))-time optimization algorithm that computes a configuration with the minimum number of crossings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Geometry - Volume 37, Issue 2, July 2007, Pages 104-114