کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
414916 | 681096 | 2007 | 14 صفحه PDF | دانلود رایگان |

For hydrologic applications, terrain models should have few local minima, and drainage lines should coincide with edges. We show that triangulating a set of points with elevations such that the number of local minima of the resulting terrain is minimized is NP-hard for degenerate point sets. The same result applies when there are no degeneracies for higher-order Delaunay triangulations. Two heuristics are presented to reduce the number of local minima for higher-order Delaunay triangulations, which start out with the Delaunay triangulation. We give efficient algorithms for their implementation, and test on real-world data how well they perform. We also study another desirable drainage characteristic, few valley components, and how to obtain it for higher-order Delaunay triangulations. This gives rise to a third heuristic. Tables and visualizations show how the heuristics perform for the drainage characteristics on real-world data.
Journal: Computational Geometry - Volume 36, Issue 1, January 2007, Pages 52-65