کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
415132 681179 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonparametric kk-sample test based on kernel density estimator for paired design
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Nonparametric kk-sample test based on kernel density estimator for paired design
چکیده انگلیسی

Comparing whether the marginal distribution functions of a kk-dimensional random variable are equal or not is a classical problem in statistical inference. Usually, the parametric ANOVA repeat measures analysis or the nonparametric Friedman test are used. Both procedures allow us to detect differences among the location parameters but not among shapes or spreads of the involved distributions. The ACAC statistic which is based on the measure of the common area under the respective kernel density estimators is used in order to compare the equality among the marginal densities of a kk-dimensional random variable. The BM algorithm is employed to select, automatically, the final bandwidth parameter. Its statistical power is studied from Monte Carlo simulations and a real data analysis is also considered.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 8, 1 August 2010, Pages 2035–2045
نویسندگان
,