کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
415164 | 681183 | 2010 | 11 صفحه PDF | دانلود رایگان |

Ranking data has applications in different fields of studies, like marketing, psychology and politics. Over the years, many models for ranking data have been developed. Among them, distance-based ranking models, which originate from the classical rank correlations, postulate that the probability of observing a ranking of items depends on the distance between the observed ranking and a modal ranking. The closer to the modal ranking, the higher the ranking probability is. However, such a model basically assumes a homogeneous population and does not incorporate the presence of covariates.To overcome these limitations, we combine the strength of a tree model and the existing distance-based models to build a model that can handle more complexity and improve prediction accuracy. We will introduce a recursive partitioning algorithm for building a tree model with a distance-based ranking model fitted at each leaf. We will also consider new weighted distance measures which allow different weights for different ranks in formulating more flexible distance-based tree models. Finally, we will apply the proposed methodology to analyze a ranking dataset of Inglehart’s items collected in the 1999 European Values Studies.
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 6, 1 June 2010, Pages 1672–1682