کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
415183 | 681188 | 2009 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Ensemble methodology, which builds a classification model by integrating multiple classifiers, can be used for improving prediction performance. Researchers from various disciplines such as statistics, pattern recognition, and machine learning have seriously explored the use of ensemble methodology. This paper presents an updated survey of ensemble methods in classification tasks, while introducing a new taxonomy for characterizing them. The new taxonomy, presented from the algorithm designer’s point of view, is based on five dimensions: inducer, combiner, diversity, size, and members’ dependency. We also propose several selection criteria, presented from the practitioner’s point of view, for choosing the most suitable ensemble method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 12, 1 October 2009, Pages 4046–4072
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 12, 1 October 2009, Pages 4046–4072
نویسندگان
Lior Rokach,