کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
415195 681188 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Impact of unknown covariance structures in semiparametric models for longitudinal data: An application to Wisconsin diabetes data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Impact of unknown covariance structures in semiparametric models for longitudinal data: An application to Wisconsin diabetes data
چکیده انگلیسی

Semiparametric models are becoming increasingly attractive for longitudinal data analysis. Often there is lack of knowledge of the covariance structure of the response variable. Although it is still possible to obtain consistent estimators for both parametric and nonparametric components of a semipatrametric model by assuming an identity structure for the covariance matrix, the resulting estimators may not be efficient. We conducted extensive simulation studies to investigate the impact of an unknown covariance structure on estimators in semiparametric models for longitudinal data. In some situations the loss of efficiency could be substantial. A two-step estimator is thus proposed to improve the efficiency. Our study was motivated by a population based data analysis to examine the temporal relationship between systolic blood pressure and urinary albumin excretion.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 12, 1 October 2009, Pages 4186–4197
نویسندگان
, , , ,