کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
415199 681188 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Distribution-preserving statistical disclosure limitation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Distribution-preserving statistical disclosure limitation
چکیده انگلیسی

One approach to limiting disclosure risk in public-use microdata is to release multiply-imputed, partially synthetic data sets. These are data on actual respondents, but with confidential data replaced by multiply-imputed synthetic values. A mis-specified imputation model can invalidate inferences based on the partially synthetic data, because the imputation model determines the distribution of synthetic values. We present a practical method to generate synthetic values when the imputer has only limited information about the true data generating process. We combine a simple imputation model (such as regression) with density-based transformations that preserve the distribution of the confidential data, up to sampling error, on specified subdomains. We demonstrate through simulations and a large scale application that our approach preserves important statistical properties of the confidential data, including higher moments, with low disclosure risk.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 12, 1 October 2009, Pages 4228–4242
نویسندگان
, ,