کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
415205 681188 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Penalized factor mixture analysis for variable selection in clustered data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Penalized factor mixture analysis for variable selection in clustered data
چکیده انگلیسی

A model-based clustering approach which contextually performs dimension reduction and variable selection is presented. Dimension reduction is achieved by assuming that the data have been generated by a linear factor model with latent variables modeled as Gaussian mixtures. Variable selection is performed by shrinking the factor loadings though a penalized likelihood method with an L1 penalty. A maximum likelihood estimation procedure via the EM algorithm is developed and a modified BIC criterion to select the penalization parameter is illustrated. The effectiveness of the proposed model is explored in a Monte Carlo simulation study and in a real example.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 12, 1 October 2009, Pages 4301–4310
نویسندگان
, , ,