کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
415251 | 681193 | 2014 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Approximating geodesic distances on 2-manifolds in R3R3: The weighted case
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We present the first algorithm for approximating weighted geodesic distances on 2-manifolds in R3R3. Our algorithm works on a weighted ε-sample S of the underlying manifold and computes approximate geodesic distances between all pairs of points in S. The approximation error is multiplicative and depends on the density of the sample. The algorithm has a running time of O(|S|2.25log2|S|)O(|S|2.25log2|S|) and an optimal space requirement of O(|S|2)O(|S|2); the approximation error is bounded by 1±O(ε)1±O(ε). As a result of independent and possibly practical interest, we develop the first technique to efficiently approximate the sampling density ε of S; this algorithm naturally carries over to the unweighted case.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Geometry - Volume 47, Issue 8, September 2014, Pages 789–808
Journal: Computational Geometry - Volume 47, Issue 8, September 2014, Pages 789–808
نویسندگان
Christian Scheffer, Jan Vahrenhold,