کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
415351 | 681202 | 2008 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fast kriging of large data sets with Gaussian Markov random fields
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Spatial data sets are analysed in many scientific disciplines. Kriging, i.e. minimum mean squared error linear prediction, is probably the most widely used method of spatial prediction. Computation time and memory requirement can be an obstacle for kriging for data sets with many observations. Calculations are accelerated and memory requirements decreased by using a Gaussian Markov random field on a lattice as an approximation of a Gaussian field. The algorithms are well suited also for nonlattice data when exploiting a bilinear interpolation at nonlattice locations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 52, Issue 5, 20 January 2008, Pages 2331–2349
Journal: Computational Statistics & Data Analysis - Volume 52, Issue 5, 20 January 2008, Pages 2331–2349
نویسندگان
Linda Hartman, Ola Hössjer,