کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
415449 681208 2008 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian inference for nonlinear multivariate diffusion models observed with error
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Bayesian inference for nonlinear multivariate diffusion models observed with error
چکیده انگلیسی

Diffusion processes governed by stochastic differential equations (SDEs) are a well-established tool for modelling continuous time data from a wide range of areas. Consequently, techniques have been developed to estimate diffusion parameters from partial and discrete observations. Likelihood-based inference can be problematic as closed form transition densities are rarely available. One widely used solution involves the introduction of latent data points between every pair of observations to allow a Euler–Maruyama approximation of the true transition densities to become accurate. In recent literature, Markov chain Monte Carlo (MCMC) methods have been used to sample the posterior distribution of latent data and model parameters; however, naive schemes suffer from a mixing problem that worsens with the degree of augmentation. A global MCMC scheme that can be applied to a large class of diffusions and whose performance is not adversely affected by the number of latent values is therefore explored. The methodology is illustrated by estimating parameters governing an auto-regulatory gene network, using partial and discrete data that are subject to measurement error.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 52, Issue 3, 1 January 2008, Pages 1674–1693
نویسندگان
, ,