کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
415488 681212 2014 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Polarization of forecast densities: A new approach to time series classification
ترجمه فارسی عنوان
قطبش تراکم پیش بینی: رویکرد جدید به طبقه بندی سری زمانی
کلمات کلیدی
طبقه بندی سری زمانی، تراکم پیش بینی، بوت استرپ اصلاح شده با اختلال، اندازه گیری قطبش
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی

Time series classification has been extensively explored in many fields of study. Most methods are based on the historical or current information extracted from data. However, if interest is in a specific future time period, methods that directly relate to forecasts of time series are much more appropriate. An approach to time series classification is proposed based on a polarization measure of forecast densities of time series. By fitting autoregressive models, forecast replicates of each time series are obtained via the bias-corrected bootstrap, and a stationarity correction is considered when necessary. Kernel estimators are then employed to approximate forecast densities, and discrepancies of forecast densities of pairs of time series are estimated by a polarization measure, which evaluates the extent to which two densities overlap. Following the distributional properties of the polarization measure, a discriminant rule and a clustering method are proposed to conduct the supervised and unsupervised classification, respectively. The proposed methodology is applied to both simulated and real data sets, and the results show desirable properties.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 70, February 2014, Pages 345–361
نویسندگان
, , ,