کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
415570 | 681214 | 2007 | 12 صفحه PDF | دانلود رایگان |

Exact small-sample methods for discrete data use probability distributions that do not depend on unknown parameters. However, they are conservative inferentially: the actual error probabilities for tests and confidence intervals are bounded above by the nominal level. This article surveys ways of reducing or even eliminating the conservatism. Fuzzy inference is a recent innovation that enables one to achieve the error probability exactly. We present a simple way of conducting fuzzy inference for discrete one-parameter exponential family distributions. In practice, most scientists would find this approach unsuitable yet might be disappointed by the conservatism of ordinary exact methods. Thus, we recommend using exact small-sample distributions but with inferences based on the mid-P value. This approach can be motivated by fuzzy inference, it is less conservative than standard exact methods, yet usually it does well in terms of achieving desired error probabilities. We illustrate for inferences about the binomial parameter.
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 12, 15 August 2007, Pages 6447–6458