کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
415660 681222 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
There are only two nonobtuse binary triangulations of the unit n-cube
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
There are only two nonobtuse binary triangulations of the unit n-cube
چکیده انگلیسی

Triangulations of the cube into a minimal number of simplices without additional vertices have been studied by several authors over the past decades. For 3⩽n⩽73⩽n⩽7 this so-called simplexity of the unit cube InIn is now known to be 5,16,67,308,14935,16,67,308,1493, respectively. In this paper, we study triangulations of InIn with simplices that only have nonobtuse dihedral angles. A trivial example is the standard triangulation into n  ! simplices. In this paper we show that, surprisingly, for each n⩾3n⩾3 there is essentially only one other nonobtuse triangulation of InIn, and give its explicit construction. The number of nonobtuse simplices in this triangulation is equal to the smallest integer larger than n!(e−2)n!(e−2).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Geometry - Volume 46, Issue 3, April 2013, Pages 286–297
نویسندگان
, , , ,