کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
415687 | 681223 | 2006 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Pairwise likelihood inference for ordinal categorical time series
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Ordinal categorical time series may be analyzed as censored observations from a suitable latent stochastic process, which describes the underlying evolution of the system. This approach may be considered as an alternative to Markov chain models or to regression methods for categorical time series data. The problem of parameter estimation is solved through a simple pseudolikelihood, called pairwise likelihood. This inferential methodology is successfully applied to the class of autoregressive ordered probit models. Potential usefulness for inference and model selection within more general classes of models are also emphasized. Illustrations include simulation studies and two simple real data applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 4, 15 December 2006, Pages 2365–2373
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 4, 15 December 2006, Pages 2365–2373
نویسندگان
Cristiano Varin, Paolo Vidoni,