کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
415865 | 681247 | 2012 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Model selection in binary and tobit quantile regression using the Gibbs sampler
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A stochastic search variable selection approach is proposed for Bayesian model selection in binary and tobit quantile regression. A simple and efficient Gibbs sampling algorithm was developed for posterior inference using a location-scale mixture representation of the asymmetric Laplace distribution. The proposed approach is then illustrated via five simulated examples and two real data sets. Results show that the proposed method performs very well under a variety of scenarios, such as the presence of a moderately large number of covariates, collinearity and heterogeneity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 56, Issue 4, 1 April 2012, Pages 827–839
Journal: Computational Statistics & Data Analysis - Volume 56, Issue 4, 1 April 2012, Pages 827–839
نویسندگان
Yonggang Ji, Nan Lin, Baoxue Zhang,