کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
415865 681247 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Model selection in binary and tobit quantile regression using the Gibbs sampler
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Model selection in binary and tobit quantile regression using the Gibbs sampler
چکیده انگلیسی

A stochastic search variable selection approach is proposed for Bayesian model selection in binary and tobit quantile regression. A simple and efficient Gibbs sampling algorithm was developed for posterior inference using a location-scale mixture representation of the asymmetric Laplace distribution. The proposed approach is then illustrated via five simulated examples and two real data sets. Results show that the proposed method performs very well under a variety of scenarios, such as the presence of a moderately large number of covariates, collinearity and heterogeneity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 56, Issue 4, 1 April 2012, Pages 827–839
نویسندگان
, , ,