کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
415973 | 681266 | 2010 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Robust concentration graph model selection
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Concentration graph models are an attractive tool to explore the conditional independence structure in a multivariate normal distribution. In applications, in absence of a priori knowledge, it is possible to select the graph underlying a set of data through an appropriate model selection procedure. The recently proposed procedure, SINful, is appealing but sensitive to outliers, as it utilizes the sample estimator of the covariance matrix. A method to make the SINful procedure robust with respect to the presence of outlying observations, is proposed. This is based on the minimum covariance determinant (MCD) estimator for the variance–covariance matrix. A simulation study shows the advantages of this method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 12, 1 December 2010, Pages 3070–3079
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 12, 1 December 2010, Pages 3070–3079
نویسندگان
Anna Gottard, Simona Pacillo,