کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
415975 681266 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Imputation of missing values for compositional data using classical and robust methods
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Imputation of missing values for compositional data using classical and robust methods
چکیده انگلیسی

New imputation algorithms for estimating missing values in compositional data are introduced. A first proposal uses the kk-nearest neighbor procedure based on the Aitchison distance, a distance measure especially designed for compositional data. It is important to adjust the estimated missing values to the overall size of the compositional parts of the neighbors. As a second proposal an iterative model-based imputation technique is introduced which initially starts from the result of the proposed kk-nearest neighbor procedure. The method is based on iterative regressions, thereby accounting for the whole multivariate data information. The regressions have to be performed in a transformed space, and depending on the data quality classical or robust regression techniques can be employed. The proposed methods are tested on a real and on simulated data sets. The results show that the proposed methods outperform standard imputation methods. In the presence of outliers, the model-based method with robust regressions is preferable.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 12, 1 December 2010, Pages 3095–3107
نویسندگان
, , ,