کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
415979 681266 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sparse CCA using a Lasso with positivity constraints
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Sparse CCA using a Lasso with positivity constraints
چکیده انگلیسی

Canonical correlation analysis (CCA) describes the relationship between two sets of variables by finding linear combinations of the variables with maximal correlation. A sparse version of CCA is proposed that reduces the chance of including unimportant variables in the canonical variates and thus improves their interpretation. A version of the Lasso algorithm incorporating positivity constraints is implemented in tandem with alternating least squares (ALS), to obtain sparse canonical variates. The proposed method is demonstrated on simulation studies and a data set from market basket analysis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 12, 1 December 2010, Pages 3144–3157
نویسندگان
, ,