کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416001 681266 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A fast algorithm for computing least-squares cross-validations for nonparametric conditional kernel density functions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
A fast algorithm for computing least-squares cross-validations for nonparametric conditional kernel density functions
چکیده انگلیسی

Nonparametric conditional density functions are widely used in applied econometric and statistical modelling because they provide enriched information summaries of the relationships between dependent and independent variables. Although least-squares cross-validation is considered to be the best criterion for bandwidth selection of the kernel estimator of the conditional density, the number of computations required for this procedure grows exponentially as the number of observations increases. A fast algorithm is proposed to reduce this computational cost, and its accuracy and efficiency are verified via numerical experiments. A practical application is also presented to demonstrate the algorithm’s potential usefulness.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 12, 1 December 2010, Pages 3404–3410
نویسندگان
, ,