کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416057 681282 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Approximate methods in Bayesian point process spatial models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Approximate methods in Bayesian point process spatial models
چکیده انگلیسی

A range of point process models which are commonly used in spatial epidemiology applications for the increased incidence of disease are compared. The models considered vary from approximate methods to an exact method. The approximate methods include the Poisson process model and methods that are based on discretization of the study window. The exact method includes a marked point process model, i.e., the conditional logistic model. Apart from analyzing a real dataset (Lancashire larynx cancer data), a small simulation study is also carried out to examine the ability of these methods to recover known parameter values. The main results are as follows. In estimating the distance effect of larynx cancer incidences from the incinerator, the conditional logistic model and the binomial model for the discretized window perform relatively well. In explaining the spatial heterogeneity, the Poisson model (or the log Gaussian Cox process model) for the discretized window produces the best estimate.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 8, 15 June 2009, Pages 2831–2842
نویسندگان
, ,