کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416062 681282 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fast estimation of spatially dependent temporal vegetation trends using Gaussian Markov random fields
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Fast estimation of spatially dependent temporal vegetation trends using Gaussian Markov random fields
چکیده انگلیسی

There is a need for efficient methods for estimating trends in spatio-temporal Earth Observation data. A suitable model for such data is a space-varying regression model, where the regression coefficients for the spatial locations are dependent. A second order intrinsic Gaussian Markov Random Field prior is used to specify the spatial covariance structure. Model parameters are estimated using the Expectation Maximisation (EM) algorithm, which allows for feasible computation times for relatively large data sets. Results are illustrated with simulated data sets and real vegetation data from the Sahel area in northern Africa. The results indicate a substantial gain in accuracy compared with methods based on independent ordinary least squares regressions for the individual pixels in the data set. Use of the EM algorithm also gives a substantial performance gain over Markov Chain Monte Carlo-based estimation approaches.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 8, 15 June 2009, Pages 2885–2896
نویسندگان
, , , ,