کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
416087 | 681282 | 2009 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Clustering and disjoint principal component analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A constrained principal component analysis, which aims at a simultaneous clustering of objects and a partitioning of variables, is proposed. The new methodology allows us to identify components with maximum variance, each one a linear combination of a subset of variables. All the subsets form a partition of variables. Simultaneously, a partition of objects is also computed maximizing the between cluster variance. The methodology is formulated in a semi-parametric least-squares framework as a quadratic mixed continuous and integer problem. An alternating least-squares algorithm is proposed to solve the clustering and disjoint PCA. Two applications are given to show the features of the methodology.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 8, 15 June 2009, Pages 3194–3208
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 8, 15 June 2009, Pages 3194–3208
نویسندگان
Maurizio Vichi, Gilbert Saporta,