کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416087 681282 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Clustering and disjoint principal component analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Clustering and disjoint principal component analysis
چکیده انگلیسی

A constrained principal component analysis, which aims at a simultaneous clustering of objects and a partitioning of variables, is proposed. The new methodology allows us to identify components with maximum variance, each one a linear combination of a subset of variables. All the subsets form a partition of variables. Simultaneously, a partition of objects is also computed maximizing the between cluster variance. The methodology is formulated in a semi-parametric least-squares framework as a quadratic mixed continuous and integer problem. An alternating least-squares algorithm is proposed to solve the clustering and disjoint PCA. Two applications are given to show the features of the methodology.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 8, 15 June 2009, Pages 3194–3208
نویسندگان
, ,