کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416106 681286 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semiparametric multivariate density estimation for positive data using copulas
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Semiparametric multivariate density estimation for positive data using copulas
چکیده انگلیسی

The estimation of density functions for positive multivariate data is discussed. The proposed approach is semiparametric. The estimator combines gamma kernels or local linear kernels, also called boundary kernels, for the estimation of the marginal densities with parametric copulas to model the dependence. This semiparametric approach is robust both to the well-known boundary bias problem and the curse of dimensionality problem. Mean integrated squared error properties, including the rate of convergence, the uniform strong consistency and the asymptotic normality are derived. A simulation study investigates the finite sample performance of the estimator. The proposed estimator performs very well, also for data without boundary bias problems. For bandwidths choice in practice, the univariate least squares cross validation method for the bandwidth of the marginal density estimators is investigated. Applications in the field of finance are provided.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 6, 15 April 2009, Pages 2040–2054
نویسندگان
, ,