کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416129 681286 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Information importance of predictors: Concept, measures, Bayesian inference, and applications
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Information importance of predictors: Concept, measures, Bayesian inference, and applications
چکیده انگلیسی

The importance of predictors is characterized by the extent to which their use reduces uncertainty about predicting the response variable, namely their information importance. The uncertainty associated with a probability distribution is a concave function of the density such that its global maximum is a uniform distribution reflecting the most difficult prediction situation. Shannon entropy is used to operationalize the concept. For nonstochastic predictors, maximum entropy characterization of probability distributions provides measures of information importance. For stochastic predictors, the expected entropy difference gives measures of information importance, which are invariant under one-to-one transformations of the variables. Applications to various data types lead to familiar statistical quantities for various models, yet with the unified interpretation of uncertainty reduction. Bayesian inference procedures for the importance and relative importance of predictors are developed. Three examples show applications to normal regression, contingency table, and logit analyses.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 6, 15 April 2009, Pages 2363–2377
نویسندگان
, , ,