کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416316 681329 2015 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Model based clustering of high-dimensional binary data
ترجمه فارسی عنوان
مدل سازی بر اساس خوشه بندی داده های باینری با ابعاد بزرگ
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی


• A method for clustering high-dimensional binary data.
• The model is extended to include random block effects for repeatedly sampled data.
• A variational EM algorithm is developed for parameter estimation.

A mixture of latent trait models with common slope parameters for model-based clustering of high-dimensional binary data, a data type for which few established methods exist, is proposed. Recent work on clustering of binary data, based on a dd-dimensional Gaussian latent variable, is extended by incorporating common factor analyzers. Accordingly, this approach facilitates a low-dimensional visual representation of the clusters. The model is further extended by the incorporation of random block effects. The dependencies in each block are taken into account through block-specific parameters that are considered to be random variables. A variational approximation to the likelihood is exploited to derive a fast algorithm for determining the model parameters. Real and simulated data are used to demonstrate this approach.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 87, July 2015, Pages 84–101
نویسندگان
, , ,