کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416336 681334 2015 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A pseudo-likelihood approach for estimating diagnostic accuracy of multiple binary medical tests
ترجمه فارسی عنوان
یک رویکرد شبه احتمالی برای برآورد صحت تشخیص آزمایشات متعدد دوتایی پزشکی
کلمات کلیدی
حساسیت و ویژگی، اثرات تصادفی، مدل های کلاس خام احتمال کامپوزیت، استانداردهای مرجع ناقص
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی

Latent class models with crossed subject-specific and test(rater)-specific random effects have been proposed to estimate the diagnostic accuracy (sensitivity and specificity) of a group of binary tests or binary ratings. However, the computation of these models are hindered by their complicated Monte Carlo Expectation–Maximization (MCEM) algorithm. In this article, a class of pseudo-likelihood functions is developed for conducting statistical inference with crossed random-effects latent class models in diagnostic medicine. Theoretically, the maximum pseudo-likelihood estimation is still consistent and has asymptotic normality. Numerically, our results show that not only the pseudo-likelihood approach significantly reduces the computational time, but it has comparable efficiency relative to the MCEM algorithm. In addition, dimension-wise likelihood, one of the proposed pseudo-likelihoods, demonstrates its superior performance in estimating sensitivity and specificity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 84, April 2015, Pages 85–98
نویسندگان
, , , , ,